

AQA GCSE Physics Equation Sheet

Topic 1 - Energy

Equation	Symbol	Unit
$E_k = \frac{1}{2} \text{ mv}^2$	E _k = kinetic energy	$E_k = J$ (joules)
	m = mass	m = kg (kilograms)
	v = speed	v = m/s (meters per second)
	E _e = elastic potential energy	$E_e = J$ (joules)
$E_e = \frac{1}{2} ke^2$	k = spring constant	k = N/m (newton's per meter)
_	e = extension	e = m (meters)
	E _p = gravitational potential	E _p = J (joules)
	energy	m = kg (kilograms)
E - mah	m = mass	g = N/kg (newton's per
$E_p = mgh$	g = gravitational field	kilogram)
	strength	h = m (meters)
	h = height	
	ΔE = change in thermal	$\Delta E = J$ (joules)
	energy	m = kg (kilograms)
ΔΕ = mcΔθ	m = mass	c = J/kg°C (joules per kilogram
	c = specific heat capacity	per degree Celsius)
	$\Delta\theta$ = temperature change	$\Delta\theta = {^{\circ}C}$ (degree Celsius)
D - E	P = power	P = W (watts)
P = <u>E</u>	E = energy transferred	E = J (joules)
†	t = time	t = s (seconds)
P = <u>W</u>	P = power	P = W (watts)
	W = work done	E = J (joules)
	t = time	t = s (seconds)
Efficiency = <u>useful energy out</u>		
total energy in		
Efficiency = <u>useful power out</u>		
total power in		

Topic 2 - Electricity

Equation	Symbols	Units
Q = It	Q = Charge	Q = C (coulombs)
	I = Current	I = A (amps)
	t = Time	t = s (seconds)
	V = Potential difference	V = V (volts)
V = IR	I = Current	I = A (amps)
	R = Resistance	$R = \Omega$ (ohms)
P = VI	P = Power	P = W (watts)
	V = Potential difference	V = V (volts)
	I = Current	I = A (amps)
$P = I^2R$	P = Power	P = W (watts)
	I = Current	I = A (amps)
	R = Resistance	$R = \Omega$ (ohms)
E = Pt	E = Energy	E = J (joules)
	P = Power	P = W (watts)
	t = Time	t = s (seconds)
E = QV	E = Energy	E = J (joules)
	Q = Charge	Q = C (coulombs)
	V = Potential difference	V = V (volts)

Topic 3 - Particle Model of Matter

Equation	Symbols	Units
	ρ = density	ρ = kg/m³ (kilgorams per
ρ = <u>m</u>	m = mass	meter cubed
V	V = volume	m = kg (kilograms)
		$V = m^3$ (meters cubed)
	ΔE = change in thermal	$\Delta E = J$ (joules)
	energy	m = kg (kilograms)
ΔE = mcΔθ	m = mass	c = J/kg°C (joules per
	c = specific heat capacity	kilogram per degree Celsius)
	$\Delta\theta$ = temperature change	$\Delta\theta$ = °C (degree Celsius)
E = mL	E = Energy	E = J (joules)
	m = mass	m = kg (kilograms)
	L = specific latent heat	L = J/kg (joules per kilogram)

Topic 5 - Forces

Equation	Symbols	Units
W = mg	W = weight	W = N (newton's)
	m = mass	m = kg (kilograms)
	g = gravitational field	g = N/kg (newton's per
	strength	kilogram)
	W = work done	W = J (joules)
W = Fs	F = force	F = N (newtons)
	s = distance	s = m (meters)
	F = force	F = N (newtons)
F = ke	k = spring constant	k = N/m (newtons per meter)
	e = extension	e = m (meters)
	E _e = elastic potential energy	$E_e = J$ (joules)
$E_e = \frac{1}{2} ke^2$	k = spring constant	k = N/m (newtons per meter)
	e = extension	e = m (meters)
	s = distance	s = m (meters)
s = vt	v = speed	v = m/s (meters per second)
	t = time	t = s (seconds)
	a = acceleration	a = m/s² (meters per second
α = <u>Δν</u>	Δv = change in velocity	squared)
†	t = time	Δv = m/s (meters per second)
		t = s (seconds)
	v = final velocity	v = m/s (meters per second)
	u = initial velocity	u = m/s (meters per second)
$v^2 - u^2 = 2as$	a = acceleration	a = m/s² (meters per second
	s = distance	squared)
		s = m (meters)
F = ma	F = force	F = N (newtons)
	m = mass	m = kg (kilograms)
	a = acceleration	a = m/s² (meters per second
		squared)
	p = momentum	p = kg m/s (kilograms metre
p = mv	m = mass	per second)
p - mv	v = velocity	m = kg (kilograms)
		v = m/s (meters per second)

Topic 6 - Waves

Equation	Symbols	Units
Period = <u>1</u>		Period = s (seconds)
frequency		Frequency = Hz (herts)
T = <u>1</u>	T = Period	T = s (seconds)
f	f = frequency	f = Hz (herts)
	v = velocity	v = m/s (meters per second)
v = fA	f = frequency	f = Hz (herts)
	Λ = wavelength (lambda)	λ = m (meters)

Topic 7 - Magnetism and Electromagnetism

Equation	Symbols	Units
F = BII	F = force B = magnetic flux density	F = N (newtons) B = T (tesla)
Note this is a capital I and a lowercase I	I = Current I = length	I = A (Amps or Amperes) I = m (meters)